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1. Introduction.

This paper is concerned with the efficient simulation of certain steady-state quantities in models

of highly dependable computing systems. In particular, we will consider techniques for accurately
estimating the steady-state unavailability, U, for models in which the failure and repair time
distributions are generally distributed. Because the system being modeled is assumed to be highly
dependable, system failure events are rare and therefore U ; 0. Standard simulation of such
systems require enormous sample sizes in order to accurately estimate U; typically, the closer U is

to zero, the longer a standard simulation needs to be run.

We seek to avoid such long run lengths by using the technique of importance sampling [11], [14].
In importance sampling, the system is simulated using a new set of input distributions (e.g., failure
distributions) that are chosen in such a way as to make the rare event much more likely to occur.
An unbiased estimate is then obtained by multiplying the output of the simulation experiment by

the likelihood ratio. If the new method of sampling is chosen properly, then the variance of the new
estimator will be much less than the variance of the standard estimator. Importance sampling has
been effectively employed in a variety of situations, including queueing models (see, e.g., [9],[25]
and [26]). Another approach to variance reduction when estimating long-rum averages in models

of communication networks is considered in [21].

Its use in simulating highly dependable systems of the type described in [12] has been studied
in [3], [4], [13], [15], [16], [17], [19], [20], [22], [23], [24], [28] and [29]. A number of these references
prove that when the importance sampling distribution is chosen according to a certain heuristic,
then the resulting estimator satisfies the "bounded relative error" property. For example, if & is an

estimator of U, then U has bounded relative error if Standard Deviation[U]/U remains bounded
even as U -- 0. In practice, bounded relative error implies that only a fixed number of samples
are required to accurately estimate U, no matter how small U is, i.e., no matter how rare system
failure events become. The above papers have considered two distinct situations:

1. Estimation of steady-state quantities such as the long run unavailability U.

2. Estimation of transient quantities such as the reliability R(t) which is defined as the probability

that the system does not fail before some fixed time t.

Results on steady-state estimation have basically been restricted to cases in which the compo-
nent failure time distributions are exponentially distributed. This restriction is required because
the steady-state estimators exploit the regenerative structure of such models (see, e.g., [6]). In this
case, because of the exponential assumption, regenerations occur whenever the model enters the
state in which all components are operational. This permits a ratio representation of steady-state
quantities, e.g., U = E[Di]/E[C,] where Di is the total amount of downtime during the ith regen-

erative cycle and Ci is the lcngth of the ith 1cgcaerative ,yde. (The time between regenerations

is called a cycle.) In addition, different regenerative cycles are i.i.d. (independent and identically
distributed) thereby permitting straightforward variance estimation and formation of confidence

intervals.
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While efficient simulation techniques for estimating transient quantities in models with gen-

crally *~triuc f£-_lurc adrc-pair ti~cG'-La, -c C~n~i~dcrcd in [L3, [L][3 and [4], untL

now, these techniques have not been successfully applied to estimating steady-state quantities due

to the fact that an entrance to the "all components up" state no longer constitutes a regeneration.

In this paper, we show how these techniques can be extended to estimating steady-state measures

in systems without regenerative structure. The approach makes use of a ratio representation for

steady-state quantities in terms of "A-cycles" that is similar to that obtained in a regenerative set-

ting, but which is more generally applicable. Here, a new A-cycle is defined to start whenever the

process enters some set of states A. (In our setting, A = all components operational.) However, the

A-cycles are no longer i.i.d., which somewhat complicates the use of importance sampling, variance

estimation, and the formation of confidence intervals. Approaches for effectively dealing with these

problems will be described in the paper. In particular, we employ a 'splitting" technique which

uses importance sampling to estimate the expected downtime during an A-cycle and uses standard

simulation to estimate the expected length of an A-cycle.

While we have not (yet) proven that this approach gives rise to estimates with bounded

relative error, the method is shown to be highly effective in practice. In addition, if the failure

and repair distributions are exponential, then the approach is closely related to using "balanced

failure biasing"[28] and "measure specific dynamic importance sampling" (MSDIS) [13] which,

for Markovian models, was shown to have bounded relative error for estimating the steady-state

unavailability in [28]. Also, when the failure and repair times are generally distributed, then the

importance sampling heuristic used is known to produce an estimate, of the transient reliability

R(t), having bounded relative error [16]. For these reasons, we conjecture that (under appropriate

technical conditions) the method does produce estimates of the steady-state unavailability with

bounded relative error when failure and repair times are generally distributed.

The rest of the paper is organized as follows. In Section 2 the ratio representation is discussed.

The issues of how to effectively combine importance sampling with this ratio representation for

general rare event estimation, and how to estimate the variance are also described in Section 2.

The application of these results to estimating the steady-state unavailability and our particular

importance sampling heuristic are described in Section 3. Experimental results are presented in

Section 4, and the results are summarized in Section 5.

2 Estimation of Steady-State Measures in Non-Regenerative Systems

Consider systems that can be modelled as Generalized Semi-Markov Processes (GSMP's). For

a detailed exposition on GSMP's the reader is referred to [10] (see also [23] for an alternative

description). Roughly speaking, these are systems which are characterized by an output state

vector, say X(f), that takes value in Z1, and an internal state vector, say S(t), that takes values

in Rp' (Z E set of integers, I is a positive integer and rn is a non-negative integer). The choice

of the output state vector depends on the application at hand and the desired level of detail.

The S(t) is defined such that it has enough information about the history of the system, so that
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{(X(s),S(s)) : s > t} depends on {(X(s),S(s)) : 0 < s < t} only through (X(t),S(t)). Let

f(X(t)) be some bounded real valued function on the output state space S. For cxa-nplcA

a system with N different components. Each component has generally distributed failure and

repair times. The age of an operational component is the time since it is last became operational.
The system has many repairmen (each component is assigned a particular repairman) which repair
components using the FCFS service discipline, and components interact by sharing repairmen. In

this case we may define X(t) to be an N-dimensional vector, the ith element of which is 1 if the
ith component is up and 0 otherwise. The internal state vector S(t) may be defined to include the

ages of the components that are operational, the repair queue and the elapsed repair time (if any)
at each repairman. For the purposes of availability estimation, the function f(X(t)) may be given
a value 1 if in the state X(t) enough components are operational for the system to be considered

up; otherwise, it is given a value of 0.

Under fairly general conditions that ensure ergodicity (which are analogous to recurrence type
properties in Markov chains with countable state space), as t --+* o, the quantity ft.=0 f(X(s))ds/t
converges to a constant with probability 1. Let us denote this constant by U. Our goal is to

estimate this steady-state measure U.

2.1 Standard Estimation Procedures for Steady-State Measures

Let A denote a length of time. Define Di = .fs=.i-.)A f(X(s))ds/A and form the estimate U =

j=1 D1/n. Then by definition, as n --* oo, U with probability 1. Also, under some more
regularity conditions, we have the central limit theorem (CLT): V/r•(T- U) =* N(0, a2 ), as n --* 0o,

where 0r2 is a variance constant. In that case, if we knew C2 , we could construct a (I-6)% confidence

interval (CI) for U. The half width (HW) of this CI will be given by z612al/v./, where z6/2 is the
100(1 - 6/2) percentile point of the standard normal distribution (see [1]). If the Di's were i.i.d.,

then a2 = Var(Di) which would be easy to estimate. If we discard some of the initial Di's (i.e.,
allow the system to reach steady-state), then the Di's from then on are (approximately) identically

distributed but still not independent. Hence the method of batch means (see [1]) can be used to
estimate a2 . We now briefly review this procedure.

In the method of batch means we group the Di's into batches, each batch having k successive

Di's, i.e., if b is the number of batches, then kb = n. Let 6, = F• -1)k+i D/k for 1 < j < b.

Then we form the estimate U ,= j 6b/b = E', Di/n which is the same estimator as before.
The method of batch means make use of the assumption that for sufficiently large k the 6,'s are

(approximately) normally distributed and uncorrelated. If we discard the first few 6,'s to allow
for the system to reach steady-state, then the 6,'s are also identically distributed. In that case we

again have the CLT, where now k --* oo. If, in addition, b is large, then a2 = Vat(6,) can easily

be estimated.

Consider f(X(s)) of the form 1 (x(.)rcv} (the indicator function), where .F C S is a rare set of
states (but with non-zero probability). In this case, most of the Di's and thus the 6b's will be zero,
and therefore, as mentioned in the introduction, it is hard to get accurate estimates. So techniques
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like importance sampling have to be used. In the following sections we develop a method based

on a representation of steady-state measures as a ratio of cxpcctuticr.. The method uses the

techniques of batch means, splitting and importance sampling to efficiently estimate the ratio.

2.2 A Ratio Representation of Steady-State Measures

Let A C S. As in the introduction, an A-cycle is defined to start whenever the {X(t) : t > 01

enters A. Let C be the length of an A-cycle. Let 0 denote the probability dynamics governing the

realizations of {(X(t), S(t)) : t > 0}. Let r be the steady-state distribution of (X(t), S(t)) at the

times when {X(t) : t > 0) enters A. Then under fairly general recurrence type conditions (which

also ensure that the system returns to state A infinitely often) we have that (see [5] and Section

6.9 of [2] for details; see also [7]) U -E .,,(D )(1
U=E,,,•( C)

where now D L .=f 0 l{x(8 )Er}ds and the subscripts in the expectation denote the initial distribu-

tion and the probability dynamics governing the realizations of {(X(t), S(t)) :t >_ 0}.

To make use of this ratio, we can first run the process for some time so that it reaches

steady-state and then run n A-cycles to get n samples of D and C. However, as in the standard

estimation procedure described above, there are two problems. First, because the set F is rare,

most of the samples of D will be zero, leading to an inaccurate estimate of E(D). To overcome

this we use importance sampling. Second, the samples of D (and C) are identically distributed

but not independent. This can be handled using the method of batch means.

2.3 Efficient Simulation of Rare Events Using Importance Sampling

Let 0' denote a new probability dynamics that now governs the realizations of {(X(t), S(t)) : t > 0},

such that the probability on the sample paths of {(X(t), S(t)) : t > 0} using 0 is absolutely contin-

uous with respect to the probability on the sample paths using 0' (absolutely continuous essentially

means that any event that had a positive probability of occurrence under the original dynamics also

has a positive probability of occurrence under the new dynamics). When importance sampling is

used, we can write E,.(D) = E,•.0, (DL) (the second subscript in the second expectation indicates

that we are using the new probability dynamics 0' to generate D and L), where L is the likelihood

ratio. The main problem in importance sampling is to choose an easily implementable 0' so that

Varf,Oy(DL) << Var,.€(D). Then for estimating the ratio we can write Equation 1 as

V E,. 4,,(DL) (2)

and use the following simulation scheme. We first run a few A-cycles using q so that the system

enters steady-state and we are assured of (X(t), S(t)) being distributed sufficiently close to ir at

the start of A-cycles. Then we do a splitting technique (see [14]) in each of the A-cycles, where we

do one run using the dynamics 0' to get samples of D and L and a second run with the original
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dynamics € to get a sample of C. The second run also ensures that we again get the distribution

Awhcn the system re-cnters state,ýA, so that we can start another A-cycle at that point in t:.-..

We repeat this procedure to get the samples Di, Li and Ci, 1 < i < n, of D, L and C, respectively.

This approach is very analogous to "measure specific dynamic importance sampling" (MSDIS) [13]

for estimating the steady-state unavailability in Markovian systems; importance sampling is used

to estimate the expected downtime in a cycle and standard simulation is used to estimate the

expected cycle time.

2.4 Variance Estimation Using the Method of Batch Means

Since the A-cycles are not independent, we use the method of batch means to estimate the variance.

As before let b be the number of batches and let k be the batch size. Let 6, = ' DiLi/k.k

and ' - Z(i=j-,)k+, Ci/k. The we form the estimate

0 = -, (3)

where E'= b6,/b = L, DL,/n, and = -y/b = E'- Ci/n.
In the steady-state, for sufficiently large k, the 6j's (and -yj's) are uncorrelated. We introduce

the generic random variables 6 and -y having the same distributions as 6, and Yj, respectively.

It follows that E(6) = E,.,(6) and E(j) = Eff.e(-y). Also, Var(6) = Var,.O,(6)/b, Var(') =

Var,,.(y)/b and Cov(6,j ) = Cov.,.O,.(6, -)/b. The subscripts in the covariance term indicate that

for each i, (Di, Li) (used in the 6b's) and Ci (used in the yj's) are sampled using the same starting

state (i.e., distributed according to ir), and using 0' and 0, respectively. Finally, from the CLT we

have vA(U - U) ; N(O, o2 ) for large k and b, where (analogous to the regenerative method)

a 2 = Vart..,,(6) + U2 x Var.•(-y) - 2 x U x Cov.•,(6, y) (4)

3 Estimation of Unavailability in Highly Dependable Systems

The class of highly dependable systems considered in this paper is that composed of highly reliable

components, i.e., the mean time between failures (MTBF) of its components is orders of magnitude

larger than their repair time. High dependability can also be achieved by increasing the redundancy

level of less reliable components; however, here we are not concerned with this type of systems.

Without loss of generality, we consider models of highly dependable systems in which a com-

ponent may be in one of only two states: operational and failed. When a component fails in a given

mode, it may cause other components to fail with some probability (failure propagation). Different

sets of components may be affected at different failure modes. Failed components are repaired by

one or more repair facilities according to some arbitrary service discipline. Basically, these models

are similar to those that can be handled using the SAVE package [12]. However, unlike SAVE, we
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allow general distributions for failure and repair times, and repairs are assumned not to be instan-
taneous. Let Gi(x) denote the failure distr.bution of ............ Tlh- .t. • zd rate .. .... -r t i
is given by hi(x) gi(x)/Gi(x), where gi(x) is the probability density function corresponding to

Gi(x) and Gi(x) = 1 - Gi(x). We further parameterize the hazard rate function in terms of a
small (but positive) parameter e and assume it is bounded, such that hi(xl < Aifbi,x >Ž 0, where
0 < A• < OO and bi >_ 1. As will be further discussed in Section 3.1, the assumption of bounded fail-
ure hazard rate functions (which holds for many, including phase-type, distributions) is necessary
in order to use the uniformization approach. Weibull is not included in the class of bounded haz-
ard rate distributions, however, it can be arbitrarily well approximated by appropriately bounding
its hazard rate function; this will enable us to experiment with an increasing failure rate Weibull

distribution, as will be described in Section 4.3.

3.1 A Uniformization-Based Importance Sampling Approach

The uniformization technique (also known as randomization [18]) can be used to sample from gen-
eral distributions (e.g., nonhomogeneous Poisson processes) with bounded hazard rate functions.
Such distributions include Markovian phase-type, but exclude discrete, uniform and Weibull dis-
tributions. To illustrate, consider simulating the nonhomogeneous Poisson process with a bounded
hazard rate h(t) <_ /3, where / is a constant rate. We generate the event times {Tk}, k = 1,2,...,
of a homogeneous Poisson process at rate / (0 is called the uniformization rate.) Tk is accepted
as an actual event of the simulated process with probability h(Tk)/13 (real event), otherwise, it is
rejected (pseudo event). The acceptance/rejection test is performed at consecutive uniformization
events until an event is accepted, in which case the same procedure is repeated to generate the

next (real) event of the simulated nonhomogeneous Poisson process.
In the context of reliability estimation, uniformization can be used to implement importance

sampling in Non-Markovian models as described in [24]. In a similar way, it can also be used for

unavailability estimation as we will describe in this section.
Consider a system with N components. At any time t, let 0(t) be the set of operational

components, and denote by a,(t), i E 0(t), the age of component i (i.e., the time since it is last
became operational). Define the failure rate of component i at time t to be Ai(t), then

Ai(t) = hi(ai(t)), if i E 0(t)
) 0, otherwise.

The total failure rate at time f is given by AF(t) 'N=i Ai(t).

Let {rn},n = 1,2,..., correspond to the real event times in the system (i.e., failure and
repair events). At real event rn, let AF(t),t > -rn, be bounded by a constant rate, say, O3, (i.e.,
AF(t) S fl.,t > 7,-). Then the time to next failure event in the system can be sampled by
successively generating the Poisson (uniformization) event times {T,,k}, k = 1,2,..., at rate O3n,
and performing the acceptance/rejection test until an event is accepted. Event Tk is rejected with

probability 1 - AF(Tk)/,3,, in which case the next uniformization event is generated. Otherwise,
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T7, k is accepted as the next failure event time. This procedure is repeated at every real event(,S:l..... rcar ognrtcte mc t .. ,
r to. gencratc thc b ct ncxt fa lare cvent. In the original system, the expected

time to next failure event (; 3) is nmuch larger than the expected time to next repair event, if any.

Therefore, a system failure is very unlikely to occur.

As we simulate the system, repairs are sampled from their original distributions, which, there-
fore, are not restricted to the class of bounded hazard rate functions. In particular, this allows

arbitrary repair time distributions, including general discrete and uniform distributions. It is as-

sumed that failure propagation probabilities are not changed in the simulated system. It follows
that uniformization (with importance sampling) is used only to simulate the time of failure events.

To implement importance sampling using uniformization we do the following. At real event

r,, (during a repair), we can simply increase the uniformization rate, 3,,, and fix the acceptance
def

probability at some level, say, p,, such that a,, j3 ,npn (this is the effective rate at which the next
failure event is generated; we call it the "biasing level") is of the same order as the repair -'rate".

This will increase the probability of subsequent failure events leading to a system failure.

Upon the occurrence of a failure event in the original system, say, at r , , component z is

selected as the failed component with probability p,,i = A•(7",,)/AF(Tn,). However, with importance
sampling, this probability could be changed. For example, in "balanced failure biasing" [28], we

equalize the failure probability for all operational components. In this case, component i E O(r7, ) is

selected to fail with probability Phsi = 1/I0(r,, )t. In addition to being simple and robust, "balanced

failure biasing" is known to be provably effective in the context of unreliability estimation [161,

[28], [29].

The likelihood ratio is computed recursively, by updating it only at pseudo and failure event
times as follows. Let Lk, k = 0, 1, 2,..., be the likelihood ratio at the kth (pseudo or failure) event,

at time tk, then L0 = 1 and

Lk = Lk -1 x () ( ,tik)1AF(tk), if type i failure event
[ l-at, It)[• if pseudo event.

In other words, the likelihood ratio is updated by a factor equal to the ratio of the probability of
the kth event in the original and simulated systems, respectively. Notice in the above equation

that Ok, Pk and pki can be changed at pseudo events; however, in our implementation (as described
above) they are changed only at real (failure or repair) events. Heuristics for choosing •,Pkt

and Pki, as well as other practical considerations, are discussed in Section 3.2. For unreliability
estimation [16], it is shown that under reasonable assumptions and appropriate heuristics, the above

method is provably effective, i.e., it yields estimates with bounded relative error. In Section 4 we
experimentally demonstrate the effectiveness of our method for unavailability estimation. However,

theoretical results to establish the property of "bounded relative error" are not yet available.

3.2 Implementation Issues

In this section we consider specific implementation issues in the estimation of steady-state un-
availability using tuiformization and importance sampling as discussed in the previous sections.
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In our implementation we use CSINI [27], a process-oriented simulation language based on the C

progranmiig language.

Following our discussion in Section 2.3 as applied to highly dependable systems, we define
an A-cycle to be a sample path between two successive entries into the fully operational state (in

which all system components are operational). Specifically, in our context, the set A constitutes
all possible components' ages upon entering the fully operational state. (Notice that upon entering

A at least one component has an age identical to zero).

The ratio representation of the steady-state system unavailability U is given by Equation 2,
where C is the length of an A-cycle in the origKaal system, D is the total downtime in an A-cycle

in the simulated system (with importance sampling) and L is the corresponding likelihood ratio.
An estimate of the steady-state unavailability is given by Equatio.. 3, where 6 and ' are estimates

of E,,,.(DL) and E.(C), respectively. Recall that the subscripts -r and 0 (0') indicate that
the expectation is taken over A-cycles having the typical steady-state entry distribution 7r, with

respect to the original (new) probabilit, dynamics.

The system is simulated sufficiently long, under the original probability dynamics 0, until it

(approximately) reaches the steady-state. From that point, let n be the number of A-cycles used
to obtain the estimate j. Since, in general, successive A-cycles are not independent, we use the

method of batch means to get an estimate Var(-y) of the variance Varn,.1(y). Following the same

notation as in Section 2.4, let b be the number of batches, each having k(= n/b) A-cycles. Let Ci

be the length of the ith A-cycle, and for batch j, let "Yj = fi=tj-I)k+l Ci/k. Then we have

b n b

-tl= b /n and Var(Y) =- j)2 /(b - 1).

k should be sufficiendy large, so as to eliminate dependence between successive batches. Our

experimental results in Section 4.1 indicate that k need not be large.

To obtain the estimate 6 we do the following. For each A-cycle that we simulate under the
original probability dynamics (we call this an -original" A-cycle), we simulate the same A-cycle

(i.e., starting with the same initial components' ages) under the new probability dynamics, i.e., with

importance sampling (we call this a "biased" A-cycle). Usually more effort is needed to estimate

E,•.•,(DL) than that to estimate E,.O(C) (since there are typically more events in a biased cycle
adn L must be computed). Therefore, we run several, say, m, biased A-cycles for each original

A-cycle. In this way, we use more cycles, namely, n' = ran, to obtain the estimate 6. If we use the

same number of batches, b, to get an estimate Var(b) of the variance Var,., (6), then the number
of biased A-cycles per batch is equal to k' = ink. Let Di, be the total system downtime in the

sth run of the ith biased A-cycle, and Li, is the corresponding likelihood ratio. For batch j, let

= i=(.-l k+l 8=L1 DiLi,. It follows that

b n rn1= D ., and f 6) = ±(6 - i)2& - 1).

9
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Furthermore, an estimate of the covariance Cov,,.o,.o(6, -t) is given by

b

Co'( -y) = (6j' -65) x - - (b - 1).

An estimate o2 for the variance a2 of the estimator U can now be obtained from Equation 4.

With importance sampling, our goal is to increase the frequency of A-cycles that contain

typical system failures. Our heuristic is similar to that for regenerative models in [23]. In a

biased A-cycle, upon the occurrence of the first component failure, we activate failure biasing to

accelerate subsequent component failures relative to the current repair event. Failure biasing is

continued until either system failure or the end of the current A-cycle. In doing so, we increase the

probability of system failure in biased A-cycles. More specifically, as discussed in Section 3.1, if

failure biasing is activated at the nth real (failure or repair) event, then the uniformization rate f,3

and the acceptance probability r• could be chosen such that a,, (recall that a,, = flnpn) is equal to

the inverse of the maximum (in case of concurrent repairs) expected current repair time, which we

denote by r,. (For a single repairman and exponential repairs, this choice is equivalent to setting

the probability of a failure before repair to 0.5.) This heuristic does not necessarily lead to the

most variance reduction, however, it is quite effective and robust. In our CSIM implementation,

we were not able to determine the components currently under repair; therefore, we set r,, equal

to the maximum expected scheduled repair time. We did not anticipate the following problem,

however. When the current repair time is much larger than its expectation, the biasing level (as

determined from the maximum expected scheduled repair) may become excessively high, causing

untypical failure sequences. This tends to significantly increase the variability of the likelihood

ratio, leading to unstable estimates. We overcome this problem by determining the biasing level

based on the actual maximum scheduled repair whenever it exceeds its expectation by several times

(say, 5 times). The above heuristics have been shown to work well, as will be demonstrated in

Section 4.

At every uniformization event, the ages of all operational components are adjusted and their

hazard rates are determined. This is required to update the likelihood ratio depending on whether

the event is accepted or rejected (see Equation 5). Since repair times are unchanged in the simulated

system, no updating of the likelihood ratio is necessary at repair events.

With a given appropriate biasing level (/9p,,), there is freedom in choosing the uniformization

rate P, (and hence the acceptance probability p,). Experiments described in [24] show that higher

0f, and lower p, result in a less noisy estimation of the likelihood ratio, and hence somewhat

lower variance of the resulting estimate. On the other hand, higher 0, and lower p,, results in

an excessive number of rejected (pseudo) events, i.e., very inefficient generatior of failure events.

An appropriate uniformization rate should be chosen low enough to limit excessive generation of

pseudo events, yet high enough to preserve accuracy. Experiments described in [24] show that

5= r, is a good choice (pr, is then determined by the chosen biasing level).

10



Once a unifornization event is accepted as a failure, then one of the operational components

issckctcd as the failing component. In our cxperiments in Section 4 we uac "balanccd failu'rc

biasing" (as described in Section 3.1). We also balance the first component failure in a biased

A-cycle. This is quite important, particularly for -unbalanced" systems (e.g., when component

reliabilities are of different orders of magnitude).

4 Experimental Results

In this section we experiment with our method and demonstrate its effectiveness for the estimation

of steady-state unavailability in highly dependable systems. We use small and large examples
with general failure and repair time distributions. In special cases, some examples conform to the

class of models having a "product form" solution. In these cases the results are invariant with

respect to failure time distributions having the same mean. Therefore, we are able to validate with

numerical (non simulation) results obtained using SAVE. Assuming exponential failure and repair

time distributions, models not having a product form solution can also be validated using SAVE.

Some of our design choices are based on earlier work (e.g., in [13], [23] and [24]). For example,

when failure biasing is activated, we set the biasing level !-np,, equal to r, (as defined in Section 3.2).

An appropriate uniformization rate P,, should be chosen low enough to limit excessive generation

of pseudo events, yet high enough to preserve accuracy. Experiments in [24] suggests that Sr,, 5r,

is a good choice (and hence the acceptance probability (p,,) is set to 0.2).

In Section 4.1 a small machine repairman model is used to experiment with the batch size

used in the batch means method. The results indicate that the accuracy of the estimates (at least

in this example) is insensitive to the batch size. In Section 4.2 another small example is used

to study the efficiency of the method under a variety of circumstances. This is accomplished by
varying the order of e (used to parameterize the failure hazard rate functions, see Section 3) and

by experimenting with "balanced" and "unbalanced" systems. In Section 4.3 a large example is

used to demonstrate the effectiveness of our method when dealing with large and complex systems.
In this example we experiment with different failure time distributions, namely, Erlang, Weibull,

exponential and hyperexponential. With exponential repair times (at the same rate), FCFS (first
come first served) repair discipline and no failure propagation, this example has i. product form

solution. In this case we can validate our simulation results with numerical solutions obtained

using SAVE.
For each table entry in all experiments of this section, we run a total of n = 64000 original

A-cycles, which are used to estimate the expected cycle length j. For each original A-cycle, we run
m = 4 biased A-cycles. It follows that the total number of biased A-cycles used to estimate the

expected downtime 6, is n' = 256000. For al but the experiment in Section 4.1, we fix the number of

batches b to 1000. Accordingly, the batch size k (k') is fixed at 64 (256) original (biased) A-cycles.

In each table entry we display the estimate (from simulation) of the steady-state unavailability,

along with its 99% half-width confidence interval as a percentage of the point estimate.

Except for special cases, the models considered in this section cannot be evaluated either an-
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alytically or numerically. Because of their high dependability feature, standard (naive) simulation

is also not practical. A a = C_.CcvCnC:. S stud~cs i. .i.s 5cctioa demonstratc th- uscf-I"n.ss of

our method, as it considerably extends the class of models in which importance sampling can be

used to evaluate various dependability measures.

4.1 Batch Size

As described in Sections 2.3 and 3.2, before collecting the samples Ci (from original A-cycles) and

DiLl (from biased A-cycles) for the method of batch means, the simulation should be run long

enough to reach its steady-state dynamics. This can be accomplished by discarding the first few

batches of the simulation. Furthermore, the batch size, k, needs to be sufficiently large, so as to
(approximately) eliminate dependence between successive batches. In this section we use a small

example to experiment with the batch size.
We consider a machine repairman model with two component types and two components

of each type. The system is considered operational as long as one component of each type is

operational. All components have the same failure time distribution; namely, Erlang with two
stages, each having a rate equal to 0.0002 per hour. Thus, the MTBF of individual components is

10000 hours. When components fail, they get repaired by a single repairman according to FCFS

discipline. For all components, we assume that the repair time distribution is exponential with a

mean equal to 1.0 hour. With exponential repairs, this model has a product form solution, which

depends on the failure distribution only through its mean. Therefore, we can validate our results

by solving the same example, with exponential failure times (having the same MTBF, i.e., 10000
hours). Using SAVE, a numerical estimate of the steady-state unavailability for this model is given

by 4.0 x 10-8.

For the same total number n = 64000 (n' = 256000) of original (biased) A-cycles, in Table

1 we successively halve the number of batches b from 64000 to 250. Accordingly, the batch size

is successively doubled from k = 1 (k' = 4) to k = 256 (k' = 1024). Note that the estimates in
the table compare well with the above numerical result from SAVE. Observe that the confidence

interval widths do not depend, in any significant way, on the batch size. (This being the case

also for the smallest batch size of one original A-cycle.) This is an indication that, in the steady-
state, consecutive A-cycles are almost uncorrelated. While it seems to be the case in this particular

example, this is not generally true for other systems. However, additional experiments (not reported

here) suggest that -near independence" of consecutive A-cycles (as defined in Section 3.2) may be

a feature of highly dependable systems. In all subsequent experiments we set the batch size k (k')

to 64 (256); this is large enough to achieve approximate independence between successive batches.

4.2 A Small Example

In this section we provide empirical results illustrating the desirable -bounded relative error"

property of our method. We show that as system failure becomes rarer, we can still estimate
the steady-state unavailability with the same accuracy; also, when the system is ,unbalanced". In
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Section 3 we parameterized the failure hazard rate functions in terms of e. In the following example

,WeZ Paralcturiz th alurc ti... %, I i Str-ibtions in tcrms of their inverse mean (1/MTBF), which we'
denote by e. By varying E we change component reliabilities (i.e., their MTBF), and, hence, the

steady-state system unavailability. Also, by having different component types with different e, we

create examples of "unbalanced" systems.

Again, we consider a machine repairman model with two types of components; 3 components of

Type I and 2 components of Type II. The system is considered operational as long as one component

of each type is operational. Failure time distributions are either Erlang or hyperexponential and

may be different for each component type (as specified below). Type II components have a higher

(preemptive-resume) priority at the (single) repair facility. The repair time distribution is constant

(deterministic), at 1.0 hour, for Type I components and uniform, between 0.0 and 1.0 hour, for

Type II components. For the same example, we perform the same set of experiments with and

without failure propagation. If failure propagation is considered, then with probability 0.25, a

failure of Type II component causes two components of Type I to fail (all operational Type I

components fail if they are equal or less than two).

We experiment with non-exponential failure time distributions. Specifically, Erlang (2, A)

(two stages, each with a rate A per hour) and Hyperexponential (p, At, A2 ) (two stages, with

probabilities p and 1 - p at rates A, per hour and A2 per hour, respectively). We parameterize

these distributions in terms of their inverse mean (e) as follows:

"* E 2 (e) -ef Erlang (2, 2 e), having a CV (coefficient of variation) = 0.707,def

" H 2 (e) = Hyperexponential (0.2727, 0.3342 e, 4.01 e), having a CV = 2.0.

We simulate the system using our method with the batch means parameters given earlier in

Section 4. For two values of e, namrely, 10-2 and 10-4, in Table 2 we give estimates of the steady-

state unavailability for the following 4 combinations of components' failure time distributions:

"* Cl: E2 (f) for Type I and E2 (e) for Type II

"* C2: E2 (e) for Type I and E 2 (e' 5 ) for Type II

"* C3: H 2 (e) for Type I and E2 (e) for Type II

"* C4: H 2 (e) for Type I and E 2(e's) for Type II.

In C1 and C3 the system is -balanced". In C2 and C4 the system is "unbalanced". Notice that

the relative error of the estimates is about the same for "balanced" and "unbalanced" systems and

is independent of the value of e. For the experiment in C1, we ran standard simulation with the same

batch means parameters. For e = 10-2, it produced an estimate having relative error ±13.41%

(compared with ±5.26% using importance sampling). This means that standard simulation should

be run 10 times longer to achieve about the same accuracy obtained with importance sampling.

No failures were observed for e = 10-4 using standard simulation.

With failure propagation, we ran the same experiments using our method. The resulting

estimates are given in Table 3. Again, the accuracy of the estimates is quite consistent throughout

the table.
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4.3 A Large Example

It remains to show that the methdd described here is also feasible and effective when dealing with

large and complex highly dependable systems. In this section we consider a large example with

many types of components. We experiment with different failure time distributions, such as Erlang,

Weibull, exponential and hyperexponential. Without failure propagation, the example falls within

the class of product form models and validation with numerical (non simulation) results is possible.

The system we consider is based on a model of a fairly complex computing system (also

considered in [24]). The computing system is composed of two sets of processors with 2 processors

per set, two sets of controllers with 2 controllers per set, and 6 clusters of disks, each consisting

of 4 disk units. In a disk cluster, data is replicated so that one disk can fail without affecting the

system. The "primary" data on a disk is replicated such that one third is on each of the other

three disks in the same cluster. Thus, one disk in each cluster can be down without losing access

to the data. Components are repaired by a single repairman according to a FCFS discipline. The

system is defined to be operational if all data is accessible to both processor types, which means

that at least one processor of each type, one controller in each set, and 3 out of 4 disk units in

each of the 6 disk clusters are operational. Operational components continue to fail at the given

rates when the system is failed. When failure propagation is considered, a failing processor in any

of the two sets causes one processor in the other set to fail with probability 0.1.

All repair time distributions are exponential with mean 1 hour (however, any general distri-

bution could be allowed). All of the component failure times follow the same distribution, with

the same coefficient of variation (CV), but possibly with different means (for the different types of

components). The MTBF for processors, controllers and disks are assumed to be 200000, 200000

and 600000 hours, respectively. We experiment with four failure time distributions; namely, Erlang

with 2 stages (CV = 0.707), Weibull with a shape parameter equal to 1.25 (CV = 0.805), exponen-

tial (CV = 1.0), and hyperexponential with 2 stages (CV = 2.0). For the Weibull distribution, the

scale parameters corresponding to the overall means 200000 and 600000 are equal to 2.1634 x 10-7

and 5.4793 x 10-8, respectively. For the hyperexponential distribution, the parameters are as fol-

lows: a probability equals to 0.2727 of branching to the first stage with a mean 600000 (1800000)

and a probability equals to 0.7273 of branching to the second stage with a mean 50000 (150000),

corresponding to the overall mean 200000 (600000).

Notice that uniformization cannot be used to sample from a Weibull distribution, since its

hazard rate function is not bounded. However, as we do in this example, random variates from

an IFR (increasing failure rate) Weibull can be arbitrarily well approximated by sampling (using

uniformization) from another distribution having a bounded hazard rate function. This approx-

imation is obtained by simply bounding the hazard rate function h(t) of the (IFR) Weibull at

Am = h(tm) beyond a sufficiently large time tin, such that 0(t. ) is extremely small, say, 10-20.

If Am is not too high compared to other hazard rates in the system, then a reasonably efficient

uniformization rate can be used to generate failure events.

We simulate the described system using our method (with the batch means parameters given
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in Section 4) to get estimates of the steady-state unavailability for two sets of failure distributions.

"LI t&C first .t (Set I) L tiit L•uuL MT, D"S given above. In the second set (Set II) we

reduce all components' MTBFs by a factor of 10 (i.e., we use less reliable components). Accordingly,

all means in the Erlang, exponential and hyperexponential stages are also reduced by a factor of

10. For the Weibull distribution, the scale parameters corresponding to the overall means 20000

and 60000 are equal to 3.847 x 10-6 and 9.744 x 10-7, respectively.

Without failure propagation, the above example has a product form solution, which depends

on the failure time distributions only through their means. It follows that the steady-state un-

availability is the same for all failure time distributions having the same mean. Furthermore, using

SAVE, we can obtain numerical estimates, which are given by 4.0 x 10`0 and 4.0 x 10' for failure

data sets, I and II, respectively.

In Table 4 we give estimates of the steady-state unavailability for the system without failure

propagation, for both sets of failure data, I and II. All relative errors in this table are less than

±10%. Notice the agreement among the estimates for different failure distributions, on one hand,

and with the above results from SAVE, on the other hand. For the hyperexponential failure dis-

tribution, the estimates are slightly less accurate than those corresponding to failure distributions

with a lower coefficient of variation. For this (hyperexponential) case, standard simulation (with

the same total number of cycles) produced unstable estimates having relative errors of ±260%

and ±111% for failure data Sets I and II, respectively. In fact, these confidence intervals are

meaningless, since they contain negative values.

In Table 5 we give estimates of the steady-state unavailability for the system with failure

propagation, for both sets of failure data, I and II. A preemptive-resume discipline at the repair

facility is now assumed, with processors having the highest priority and disks having the lowest

priority. Notice that the steady-state unavailability is affected only a little by the failure time

distribution. However, as expected, the point estimates are consistently higher than those in Table

4. Because this is a different system, the confidence intervals happen to be slightly wider than

those in Table 4.

Again, in each of the Tables 4 and 5, the accuracies of the estimates are about the same,

regardless of the failure distributions or their means. These empirical results are consistent with

the conjecture that our method produces estimates of steady-state unavailability having bounded

relative error.

5 Conclusions

This paper has considered the problem of estimating steady-state quantities for models of highly

dependable computing systems in which the component failure and repair times have general distri-

butions. Such models are analytically and numerically intractable; simulation is the only possible

means of analysis. However, standard simulation is inefficient when system failure events are

rare and importance sampling needs to be used to speedup the simulation. Earlier importance

sampling approaches are effective for steady-state estimation only when the failure time distribu-
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tions are exponentially distributed, in which case the regenerative structure of the model can be
exploited. When failure times are generally distrUb4~ ted, bich iegeA-et,• UbL,.lv-e ,

a ratio representation in terms of non-ii.d. cycles still exists for steady-state quantities. Using
this representation, a splitting technique can be devised in which importance sampling is used to
estimate the expected downtime during a cycle and standard simulation is used to estimate the
expected cycle length. The particular method of importance sampling that we use is based on urn-
formization, and is provably effective for estimating certain transient quantities within this class of
models. Experiments showed the method to be effective in practice for estimating the steady-state
unavailability.

As a result of this work, the class of highly dependable systems that can be efficiently simulated

to estimate steady-state measures is greatly broadened.
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k 1 2 4 8 16 32 64 128 256
k' 4 8 16 32 64 128 256 J 512 1024
b 64000 32000 16000 8000 4000 2000 1000 1 500 250

i 3.20% I 3.17% I 3.16% jI± 3.15% I 3.10% * 3.06% I 3.09% - 2.96% : 3.05%

Table 1: Estimates of steady-state unavailability (x 108) in a machine repairman model
(experiments with batch size).

Combination C0I C2 C3 C4
Type I Fail. Dist. E2 (e) E2()) H2 ()) _____

Type II Fail. Dist. E2(e' E ) E2(e) E2(el'*)

C = 10' 3.399 x 10-5 1.317 x 10-1 3.387 x 10' 1.401 x 10-5
± 5.26% * 3.37% ± 5.56% ± 6.07%

f = 10-" 3.422 xlO0-1 1.336 xlO-z• 3.282 xlO0-1 1.379 x1O-11

± 5.56% * 3.62% ± 5.95% ± 6.42%

Table 2: Estimates of steady-state unavailability in a machine repairman model
without failure propagation.

Combination Cl C2 C3 C4
Type I Fail. Dist. 1 E(c) I E2(0) HE2( HJ(O)Type 11 Fail. Dist. E2(c) E2(t"') E2(0) I E2(0"')

e = 10.3 2.605 x10-1 2.195 x10-' 3.570 x10- 4  2.351 x10-1
=: *2.30% * 2.70% ± 2.74% ± 3.35%

e= 10 2.625 x10- 2.080 x10-11 3.519 x10-5 2.153 x O1-
•±4 2.45% =:k 3.57% ±" 2.9T% ±l 4. 10%

Table 3: Estimates of steady-state unavailability in a machine repairman model
with failure propagation.
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Failure II Erlanic 2 1 Weibull Exponential I Hyperexponential 2 jI

Data Set I (CV = 0.707) (CV = 0.805) (CV = 1.0) I (CV = 2.0)

Set I 4.046 x10- 1 4.012 x10-10  3.953 x10-10 3.810 x10- 10

± 7.41% ± 6.32% ± 5.68% * 8.75%

Set II 3.861 x10-5 3.911 x10-0 4.107 x10-8 3.904 x10-8

+ 6.15% ± 6.07% - 5.82% - 9.90%

Table 4: Estimates of steady-state unavailability in a large example (without failure propagation).

LFailure Erlang 2 Weibull Exponential Hyperexponential 2

Data Set (CV = 0.707) (CV = 0.805) (CV = 1.0) (CV = 2.0)

Set 1 6.856 xl0-I° 6.863 x10- 1  6.646 x10-'° 7.383 xl01-°

- 9.87% ± 8.93% ± 8.83% ± 13.77%

Set 11 6.610 x 10-0 6.570 x 10-0 6.861 x 10-5 7.766 x 10'

:h 9.18% - 9.53% - 8.17% - 12.53%

Table 5: Estimates of steady-state unavailability in a large example (with failure propagation).


